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., NTRODUCTION

Our description of semi-Markov processes (SMP's) is heuristic

and unconventional. We postpone a formal definition of a distinguished

state and a discussion of regularity conditions to following sections

Many recondite matters, especially those that arise in the infinite

state case, are omitted.

A key concept, already familiar to readers acquainted with queueing

theory, is that of an imbedded Markov chain connecting the regeneration

points of a stochastic process. Starting from a regeneration point,

the future is stochastically independent of the past. All distinguished

states correspond to regeneration points; thus, they have the Markov

property. In the imbedded Markov chain, the original time scale of the

transitions between the distinguished states is replaced by a discrete

time version where all transitions take unit time. By studying the

corresponding semi-Markov process, defined precisely in Sec. 3, we

recover the probabilistic behavior in the original time scale.

I is defined to be the set of distinguished states, assumed

countable. The state transitions form a Markov chain with transition

probabilities (pij), where direct transitions from a state to itself

(e.g., PiL > 0) are allowed. Given that an i - j transition is about

to occur, the duration of the transition has distribution F ij. We

define

Qij(t) a PijFij(t)

H i(t) 0 Eqtj (t).

Unless otherwise stated, all sunations will be over I+ and all

functions vanish for negative arguments.
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Thus H. is the unconditional distribution of the time elapsed starting
L

from state I until the next state is entered (possibly i itself). Note

that

(1) a one-state SMP is a renewal process;

(ii) an SMP with Fij degenerate at one for all I, j is

a Markov chain;

(iii) an SMP with all Fil exponential is a continuous
time countable-sta e Markov process.

Many problems in management science and operations research can

be modeled as SMP's: for example, queueing, inventory, and mainte-

nance problems. For details, see, e.g., Pyke [271, Barlow and Proschan

[1], Fabens (111, and ginlar [4]. For proofs, citations of earlier

papers, and additional topics in SMP's, the reader should consult the

reference list. Another expository paper is Janssen [191,.

i-
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It. DISTINGUISHED STATES

In this section we examine precisely what is meant by a dis-

tinguished state. Since discussing this topic in an offhand manner

could result in confusion, the subject is treated in some detail.

For each sample path of a stochastic process X, there is a corre-

spondence between rt: t 2 01 and a set of states S. If every state

in S is required to have the Markov property, then in general S will

be unco,,ntable since a history of the process, or at least the rele-

vant portion of it, must be part of the state definition. However,

all that we require of S is that it have an appropriate countable

subset I of (distinguished) states having the Markov property. Thus,

for a state to be a candidate for I , it must correspond to a regener-

ation point, but we do not require that all states corresponding to

regeneration points belong to I

To fix these ideas concretely, we illustrate them with examples

from the M/Gil queue (Poisson arrivals, general service time distri-

bution, single channel). For many purposes, a convenient set of dis-

tinguished states is to, 1, 2, ... , i, ... ] where state i signifies i

customers in the system and a service has just been completed. Note

that not all regeneration points are included in this set, since any

time the system is idle (empty), it is at a regeneration point. Our

choice of distinguished states conforms to our requirements because

the time to the next arrival is stochastically independent of the

time elapsed since the last arrival. In general, arrival epochs,

except those corresponding to the start of a busy period, are not

regeneration points. Thus the state "i customers in the system and



a customer has just arrived" cannot be a distinguished state, unless

the service times. are exponential. Through the use of so-called

supplementary variables, we can define every state in the original

process so that it is Markovian. Each state is then a couple of the

form (i, u), which denotes i customers in the system and the customer

being processed has been in service for time u. Sometimes supple-

mentary variable techniques are useful as an alternative or adjunct

to SMP techniques; see; e.g., Cox and Miller C51.

Returning to the general discussion, we require the distinguished

states to be defined such that non-zero holding times in a distinguished

state are forbidden but i stantaneous transitions among the distinguished

states are allowed. This is a departure from the setup of Pyke £261,

although the two formulations are essentially equivalent. Our definition

of distinguished state is natural in a dynamic programming framework

(see, e.g., Denardo and Mitten (9]) and permtts a graphic representation

of SMP's in terms of networks with branch nodes (distinguished states)

and stochastic arc lengths; see £13]. For example, traversing an arc

could correspond to a customer completing service.

To remove ambiguity in case of instantaneous transitions, we

define X +(t) - X(t +); thus, X+ is right continuous and last distinguished
+I

state of X+ entered in C0, t], say, is well defined. Since we have

prohibited non-zero holding times in distinguished states, we cannot

allow a distinguished state to correspond to a nondegenerate interval

of regeneration points (e.g., an idle period in an M/G/l queue). Thus,

Sometimes it is convenient to permit instantaneous transitions;

see, e.g., Denardo [7].
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to exclude an infinite sequence of instantaneous transitions from a

state to itself, we require that the distinguished states be defined

such that, for all nondegenerate intervals (a, b), E 4 i

PtX(t) - L, Vt F (a, b) -a 0. For example, in the M/G/l queue it
does not suffice to define the distinguished state 0 as 0 customers

in the system. The condition that a service has Just been completed

must be added.

Throughout the sequel, "state" refers only to "distinguished

state," necessitating definitions slightly different from conventional

usage.
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Iri. REGULAR SMP'S

Letting N1 (t) denote the number of times state j is entered in

the half-open interval (0, t], we obtain the Markov Renewal Process

(MRP) N(t) - (N (t), N1 (t), ... , Nn(t)), where I+ t (o, 1, 2, ... , nj,

possibly with n - m. Let Z(t) be the last distinguished state of X
+

entered in CO, ti. In the literature the Z process is called an SMP.

However, the MRP and the SMP are different aspects of the samu under-

lying stochastic proress; therefore, by slight abuse of language, we

shall refer to the underlying process itself as an SMP or a MRP, using

the terms interchangeably.

A MRP is regular ii with probability one (w.p.1) each state is

entered only a finite number of tinies in any finite time span--i.e.,

if P[Ni(t) < m] - 1, Vi E I+ and t ! 0. A MRP is strongly regular

if w.p.l the total number of state transitions is finite in any

finite time span--i.e., if P[E Ni(t) < nl - 1, Vt 2 0. Clearly

strong regularity implies regularity and, if n < -, the terms are

equivalent. In applications, it will ordinarily be obvious that

strong regularity holds. If n < -, it suffices that H - (Ho, ..., H n)

have at least component nondegenerate at zero for every ergodic sub-

chain of the imbedded Markov chain. In the denumerable state case

(n = -), see Pyke [261 and Pyke and Schaufele [271 for conditions

that imply strong regularity. In the sequel, we assume that strong

regularity holds.

f ;#
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IV. FIRST PASSAGE AND COUNTING DISTRIBUTIONS

Le t

P i(t) - P[Z(t) = jIZ(O) -

c (t) - P[N r)M > OIZ(O) =i

(first passage time distribution)

Mij (t) - E[N (t) IZ(O) - i)

(mean entry counting function).

Defining the convolution

t

(A * B)(t) =f A(t - x) dB(x),

we have by straightforward renewal-theoretic arguments:

PiJ . (I - Hi)6j +IkQik * PkJ = (1 - Hi)Sij + Pjj *Gij

Cij .QiJ + E Qik *kj
k~j

Mij - Ci +G i * M 1j QiJ +Fk Qik * Mkj"

In general, these relations cannot be solved analytically. In the

finite state case, numerical solutions can be obtained by numerical

inversion of the corresponding Laplace transforms (see, e.g., (2 1,
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[18], [24], and [301). For each value of a, only one matrix inversion

in the transform domain is required--that of I - q(s), where s > 0 and

q(s) e. (j t dQ ij (t).

In obvious notation, having found [I - q(s)] I
, either analytically

as a function of s or, for suitably spaced values of s, numerically,

one successively computes

r(s) w [I - q(s)] lq(s) - [I - q(s)] - I

stj(s) - mij (s)/Cl + m j(s)l

pij(s) - p j (sgii(s), i #j

1 - hi(s)
-j~s 1 - gjj(s)

and then inverts the transforms. Although this procedure is not

trivial, it often compares favorably with the alternative simulation

approach for getting the transient behavior in the time domain. By

usual limit theorems for laplace transforms (Widder [31], Feller r121,

see also Jewell [201), the behavior in the time domain for large

(small) t corresponds to behavior in the transform domain for small

(large) a.

Conditioning on the event that no state in a subset B of I+ is

entered in (0, tj may be of interest. For example,
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a P j(t) - P[Z(t) - JjZ(O) - i, Nk(t) 0, Vk E BI

B C j - P[N.(t) IM OIZ(O) i I, Nk(t) 0, Vk E BI

B Mij(t) - E[N (t)IZ(O) a i, Nk(t) 0 0, Vk E BI

can be calculated from the formulas already given by (temporarily)

making the states in B absorbing.

The first and second moments of Guit denoted respectively by

(2)
$lJ and ,ij) are given by

i " ok~j PiklakJ + 'i

(2) + k(2)

k#j

(1)
where vjj is the mean of F i, V V, and

0

We assume that V (2) , V E I+ If the imbedded Markov chain is

finite and ergodic, these equations have a unique finite solution

and, with n the stationary probability that the last state entered

See appendices 1 and 2 of Fox [13] for an efficient way to solve

these equations. (An expression for the "bias terms" in Markov renewal

pro;rar ning involves the first passage time moments, which are of

intrinsic interest, but recently Jewell [221 has derived a remarkably

simple alternative expression, obviating the need to calculate 4hij)
and to evaluate the bias terms).



is j if all Fij were degenerate at one, multiplying i and (2)

by ri and summing yields

0ij J (0l/i ) E 'n~k
k

(2). (2)T)[ +kk 2 p 1ikVi'k]
k j~~&jJ k#J

For finite state SMP's, the probability that state j is ultimately

reached starting from i is

1, if i, j E Ek

Gij(=) - 0, if i E Ek, J E El, k j J

C(I - A)1 O ,  if i C T, j EE

where A is the submatrix of P corresponding to the set T of transient

states, El, ...' Em are the recurrent subchains of P, and

= J Pilo i E T.
LEEkk

The mean time to leave T starting from i is

S- (I - A)lvtli, i E T,

t
where v is the vector of vj's, J E T. A double generating function

for the distribution of Nj(t) is

In other words, 1T is the stationary measure for the imbedded
chain, but not (in general) for the SMP itself.

"The case i, J E T, of less interest, is not considered.
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TZ ' 2 (-Z)m Ex I + (1 - )DI"l,

where 1 is a matrix of I's,

and

?z"(Oil(z; 0))

ij (Z; a) M e dtwij(z; t)

wij(z ; t) a. E Ik vij (k; t)

k-O

v ij(k; t) - PCNj(t) - kIZ(O)

Thus, in principle, the probabilities and moments can be obtained in

Lhe usual way. The Laplace transform m of the first moment (M ij())

was already given. We remark that, if Z(O) - i and i belongs to the

same ergodic subchain as J, t1 INj(t) -. l/ jj (l/c m 0) w.p.l, a

strong law that follows immediately from renewal theory. See Pyke

and Schaufele £281 for further general moment computations, weak and

strong laws of large numbers, and central limit theorems.
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V. STATE CLASSIFICATION

In classifying the states of a SMP transient, null recurrent, or

positive recurrent, we must distinguish between a state's classifi-

cation in the imbedded Markov chain and in the SMP itself. For It

finite and vi < *, Vi E I+, the distinction disappears and a state J

is either transient or positive recurrent (CG( ) 1 1 and j, <)

In large-scale applications, the ergodic subchain-transient set

breakdown may not be obvious and recourse may be necessary to an

algorithmic classification scheme such as that of Fox and Landi £16].

For I+ infinite, a state j is transient (recurrent--i.e., CGj(-) 0 1)

in the SMP * j is transient (recurrent) in the imbedded Markov chain.

State A is positive recurrent in the imbedded Markov chain (contained

in ergodic subchain Ek) and, for some constant c, Vij & C < -, Vi,

J E Ek, I £ is positive recurrent in the SMP. A SMP is positive

recurrent if all the states in I+ are positive recurrent in the SMP.
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VI. STATIONARY PROBABILITIES

It is important to distinguish between the stationary proba-

bilities fin] with respect to the imbedded Markov chain and the

stationary probabilities (pi] with respect to the SMP.* Thus p,

is the steady state probability that the last distinguished state

entered is i. Hence the (pt) are of direct interest in applications,

while the fri) are computed only as an intermediate step. We consider

first the case finite and V <  Vi ( I+ .

V J/0i, j Ek, Z(O) E k

P0 ij(-)v /PjjJ E Ek, Z(O) - i e T

0, j T.
0, j E k, z(o) Ellt k

where G j(-) was computed already and

VJ/jj E . i..
lEEk

with (nwO here being the stationary probabilities for the imbedded

Markov chain given that Z(O) E Ek.

In the remainder of this section we assume that the imbedded

Markov chain is irreducible and that the SMP is positive recurrent,

where : + may be finite or infinite. We also assume that the mean

In general, the stationary probabilities must be interpreted
as Cesaro limits. If the process is aperiodic, these reduce to

ordivary limits.
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transition times are uniformly bounded away from zero; i.e., 0 < e s

VL J < a. With these assumptions, Fabens (101 shows that

17 V

ii

in agreement with result given above for the I + finite case. Define

a(x) an the time of the last transition before or at x and j(x) as

the time of the next transition after x. The random variables

y(x) - r(x) - x (excess r.v.)

&(x) - x - cy(x) (shortage r.v.)

are of interest. Adding to the previous assumptions the hypotheses

that the mean recurrence times i } are finite and that Z(O) is

aperiodic, Fabens shows that

lim P[6(t) & xIz(t) - il lim P((t) & XIz(t) - i)
t-4CD t-AM

x
- CI - H (u) ] du.

This generalizes the well-known result from renewal theory for the

one state case, obtained there as a corollary to the key renewal

theorem; see, e.g., Barlow and Proschan [].

The general question of existence and unqueness of stationary

measures is dealt with in Pyke arfe a291. Cneong t3h gives

conditions under which convergence to the steady state is geometric.
thoe;se r. aro n rshn[]

Th eea usino xseceaduiuns fsainr

mesuesi deal it in Pyk and Scauel [21 I n (31 giesI I
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VII. EXAMPLE: THE M/C/l QUEUE

To illustrate the notion of stationary probabilities for a SHP,

we consider the H/G/l queue. Let

ni * the stationary probability that i customers are in
the system just after a random service completion
epoch

0, a the stationary probability that I customers are in
the system just after the service completion epoch

preceding a random point in time

P1 
= the stationary probability that i customers are in

the system at a random point in time.

We assume that the traffic intensity Xb is less than one, where X is

the arrival rate and b the mean service time, assumed positive.

Although it is easily shown that

P ( (1 + Xb)2 a I - (Xb) 1 0,

it turns out that pi = rri' Vi, a remarkable result originally due to

Khintchine [231 and derived in a more elementary manner by Fox and

Hiller [17] using SMP theory. A similar result holds for the G/H/l

queue, but in bulk queues (Fabens [111), for example, the stationary

measures for the imbedded Harkov chain and the original queueing

process are different.

Readers familiar with queueing theory may prefer to skip to the

last paragraph of this section. In between, the standard manipulations

yielding G (z), the generating function of the [T,], are performed.

Recalling that state n means that there are n people in the

system and a service has just been completed, we obtain the well known
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transition matrix for the imbedded Markov chain:

0O 1 2 3 14

0 k0  k I k2 k3 k4

I k0 kI k2 k3 k4

2 0 k 0 k1 k2 k3

3 0 0 k 0  kI k2 .

4 4 0 0 0 j k0 k,

where

kn so f ne. (Xt)n dB(t)
n n!.

and B is the service distribution. By the usual straightforward

manipulations, we find that the generating function of the (kn) is

Gk(z) -Fkzi - 00(1 - Z))

i

where p is the Laplace-Stieltjes transform of B, i.e.,

$(s) e at dB(t).
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To obtain the stationary vector W for the chain, we multiply the i-th

i
relation determined by nP - n by z and sum, define the generating

function

C (z) - E riz'

and obtain from the special form of P for this chain by an easy calcu-

lation the standard result

W T(z) ' - z)"k(z)
IT Gk (z) -z

Using the fact that lim G (z) 1 (i.e., the probabilities sum to 1)

and applying L'Hospital's rule,

= 1 - Xb.

Summarizing our results so far,

(z) (1 -. z)(X(1 - z))
O '"= (l(1 - z ) - a

Thus the mean numbe in the system averaged over service completion

epochs is, with c the variance of the service times,

lim G (z)" * l [G(z) - 2G(z)(G " ( z ) ) (b) 2  2
2 Xb + p

Z-1- Z-1- 2(G~(z - 1) I 1

and by the fact that Wi = Pit Vi, is also the mean number in the

system at random point in time (in the stcady state). Higher moments
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and ptobabilities can be obtained from the generating function by

appropriate differentiations, which, however, become quite tedious.

Having found C (z), the stationary waiting distribution for the

first come, first served (FIFO) discipline can easily be found. If

an arrival finds the system empty, the conditional wait in queue is

0. Otherwise it is governed by the remaining processing time of the

customer in service, the excess random variable, plus the service

times for the customers (if any) already in queue. Noting that

Gp (z) - G (z), the interested reader can readily derive the Pol.aczek-

Khintchine formula for the stationary wait in queue. (The Laplace-

Stieltjes transform of the stationary queueing delay distribution is

found to be no + I -0)(s) )*sbo(s) [p s  T]) See Feller [12], p. 392,

for an alternate elegant derivation that bypasses the calculation of

Gp (z). A third derivation follows from the fact that the number of

customers in the system just after a departure is the number of

arrivals during his total wait (queueing time plus service time);

the resulting equation is solved by taking generating functions

yielding the standard form of the Laplace-Stieltjes transform of the

stationary queueing delay distribution sffo/(s - ).(1 - 0(s)), a version

of the Pollaczek-Khintchine formula. For a fourth derivation, where

the (superfluous) assumption of a continuous failure distribution is

tacitly made, see Cox and Miller (5], pp. 241-242.

Comparison with the standard form of the transform yields an
interesting and surprising identicy. The derivation depends on the
fact that, since the arrival process is Poisson, an arrival plays
the role of a random observer.



-20-

VIII. ASYMPTOTIC FORM OF Mij

From a previous section, we know that for finite state SHP's

mij(s) = gij(s)El + M j(s)3

ij(S) .+ . jj(s) "

Formally expandinge1sx in a Taylor series and integrating termwise

yields for i, j in the same ergodic subchain

(2)

m ij(a) =l-- - + i - + o0)
"'j j 24J j Ili

whence by a Tauberian argument

(2)

M Mt -~ -tj Jj
ij (Cesiro) 2 2

a result that can be obtained by analogy with renewal theory for

delayed recurrent events, where the time to the first "renewal" has

distribution Gj and the spacing beLween subsequent renewals has

distribution G j. If the SMP is aperiodic, the Cesaro limit reduces

to an ordinary limit. It can be shown that the formal manipulation

used to obtain the asymptotic expansion of mij(s) is justified

provided that v (2),<Vi I+ .

L -- - I I ll " -- .. . . ... .. ... .
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IX. FINITE SMP'S WITH COSTS

Often in applications, costs are associated with the transitions.

Measuring time from the start of an i j j transition, let Cij(xlt) be

the cost incurred up to time x given that the transition length is t.

The expected discrunted cost for a transition starting from state i

is then

m t
Y ( ) = ) j Pij O dF ij(t) o e -CO d xCij (xIt)'

where a cost incurred at time x is discounted by the factor ef.

An elementary renewal type argument then shows that vi(o), the total

expected discounted cost over an infinite horizon starting from state

i, satisfies

v() - Y(a) + q(C)v(1),

where ar > 0 and v(a) and y(c) are the vectors with componert'. vi(a)

and y(o), respectively. Thus, assuming a finite number of states,

v(0) - CI - q(a)1-Y(a).

Since I - q(O) is singular and a direct asymptotic expansion is not

obvious, it is convenient to make use of the relation between q and

m given earlier to study the behavior of v(a) as a 0 Following

Jewell [21], we have

v(a) - [I + m(a)1Y().

f
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Making use of the expansion of m(a) given in the preceding section,

we find that, if I is a recurrent state, vi(o) has the form

vi (C)O ti/a + wi + o(l)

and a straightforward argument in Fox 03] then shows that this form

is valid for any state; i.e.,

v(u) - i/a + w + o()

where expressions for 1, the loss rate vector, and w, the bias term

vector, can be found in Jewell [21, 221 and Fox [131, where appropriate

conditions are given to justify the expansion. Substituting this

relation into v(a) - 'Y(a) + q(t)v(cr) and equating the coefficients

of a and the constant terms, respectively, yields

P1 - t

Y + Pw w + y

Yi 'E Pijvij 'j

V i~i ,  if I is recurrent.

These expressions can be solved uniquely for 1, but w is determined

only up to an additive constant in each ergodic subchain; see, e.g.,

This procedure can be justified by a simple contradiction
argument. Note that qij(a) = Pij(l - Ovij) + o(a) and that- the

loss rate for all states in an ergodic subchain is the sair-.
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Denardo and Fox [81. An interesting and intuitive result that follows

easily from the above formulas is that the loss rate for each state

in an ergodic subchain Ek is the same and equal to (k)YV/j(k)V1,

where i
(k ) Is the stationary vector for the corresponding stibmatrix

and Y' and v' are the restrictions Y and ,, respectively, to Ek.

The loss rates for the transient states are obtained from the fact

reflected in P1 - I that the loss rate for a state is given by the

appropriate convex combination and that I - A, where A is the sub-

matrix corresponding to the transient states, is invertible.

Denoting the undiscounted loss up to time t by L(t), we obtain

from the asymptotic expansion of v(a) that

L~t)- it(Ces'aro) w.
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X. MARKOV RENEWAL PROCRAMMING

The situation becomes more interesting when, at each state i,

one has a set of options Ai and the choice at i simultaneously deter-

mines P ij Fij' and Cij for all j E I+ . The goal is either to choose

a policy that minimizes either thp expectcd dixcounted loss or the loss

rate. In the latter case, an appropriate secondary objective is to

minimize (1, w) lexicographically, which is especially important when

some policies can have transient states. With either criterion, an

optimal policy can be found by linear programming when I+ and X-,+ A,

are finite. For details, see, e.g., Jewell [21, 221, Fox [131, Denardo

[6, 71, and Denardo and Fox [81, where references to the earlier

(extensive) literature on the subject are given. Some papers (e.g.,

Derman [101) treat the I+ infinite case, but the author believes that

for applications the general theory developed so far for that case is

inadequate and that particular problems are best attacked on an ad hoc

basis. For the case where I+ is finite but the finiteness restriction

on XA i is dropped, see Fox [141.
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XI. ESTIMATION AND STATISTICAL INFERENCE

Moore and Pyke (251 develop estimators for the rp~j) and the

fFij) and their large biiiple distributions. For statistical inference

in birth and death queueing models, see Wolff (321. Both of the fore-

going approaches are objectivist, i.e., non-Bayesian, When a large

number of observations are at hand, the objectivist approach is un-

objectionable and difficulties stemming from a possible lack of con-

sensus of prior belief do not emerge. On the other hand, when the

observations are few or nonexistent, as is common, a Bayesian approach

incorporating prior beliefs and loss functions is essential. Such an

approach may be formal or may simply consist of a sensitivity analysis

with the outcomes being given subjective weights. In the realm of

decision making, policies should adapt to modified beliefs as more

observations are taken. This area remains largely unexplored and is

ripe for investigation.

This is, of course, a statement of the author's opinion. These

matters are highly controversial.

In this connection, [15] may be of interest.
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